Transformations and Tessellations (Year 7)



Image Source

This last week of Term 2 we will be doing some transformations and tessellations. Our learning intention is to understand and describe translations, reflections in an axis, and rotations of multiples of 90° on the Cartesian plane using coordinates and to identify line and rotational symmetries.

Your first task is to use the letters of your name, on a poster, to demonstrate your understanding of translation (slide), rotation (turn), reflection (flip) and dilation (increase in size).

Your second task is to use a shape that tessellates (fits together with no gaps or spaces) to create an artwork, similar to the ones in these YouTube videos:

These links will help you to plan, design and construct your own:




Image source

Learning Intention: “Describe translations, reflections in an axis, and rotations of multiples of 90° on the Cartesian plane using coordinates. Identify line and rotational symmetries.” “Define congruence of plane shapes using transformations.”

Success criteria: Students will create a design that shows various transformations of a 2D geometric shape and be able to describe the translations, reflections and rotations that have taken place to form a tessellation.

Tessellations have been popular decorations for hundreds of years, as this tiled ceiling of the Sheikh Lotfollah Mosque in Iran (1602-1619) shows. Any shape or shapes that can be repeated to fill a 2D plane can be considered tessellations; so, equilateral triangles, squares, rectangles and hexagons are all simple shapes that can be tessellated.

Maurits Cornelis Escher (1898-1972) is one of the world’s most famous graphic artists. His art has been reproduced extensively, especially his ‘impossible structures’ and his tessellations. You may have seen some of his work in your art classes. This YouTube video, Escher’s Tessellations,  showcases some of his work.

We are going to create our own tessellations using one of the following methods.

1. Create a Tessellation using the paper-cut method (YouTube)

2. How to make an Escher-esque Tessellation (YouTube)

3. How to create a Tessellation (YouTube)

This fantastic site,, has lots more examples of tessellations and describes different methods for creating your own, including a praying mantis design submitted by an Australian student. I would love you to create a design that you are really proud of that you can also submit to the site.